The Raman Spectrum and Structure of Bromyl Fluoride

By R. J. GILLESPIE and P. SPEKKENS

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary The Raman spectra of solid and liquid ${\rm BrO_2F}$ have been obtained and show that in both states ${\rm BrO_2F}$

is monomeric with a pyramidal structure, like ClO_3F but differing from polymeric IO_2F .

THE Raman spectrum of liquid ClO_2F and the i.r. spectrum of the gas show that it is monomeric and has a pyramidal structure.¹ In contrast the Raman spectrum of IO_2F together with its lack of volatility strongly suggests that it has a polymeric structure.² Schmeisser and Pammer^{3,4} have reported the preparation of BrO_2F by several reactions but no analytical or spectral data has been reported, and there is no information available about the structure of BrO_2F . metric BrO stretching mode is split into two peaks and that shoulders appear on some of the peaks. We conclude, therefore, that the reaction of $KBrO_3$ with BrF_5 produces BrO_2F , that it has a monomeric pyramidal structure like ClO_2F , and that it is not polymeric like IO_2F .

The BrO_2F frequencies are lower than those of ClO_2F , which is consistent with the expected greater bond strength in ClO_2F due to the greater electronegativity of chlorine. There is also reasonable agreement with the spectrum of the

TABLE

Raman spectra of BrO₂F, ClO₂F and SeO₂F^{-/cm⁻¹}

ClO ₂ F ⁸	SeO ₂ F ^{-b}	solid BrO ₂ F (-75 °C)	BrO ₂ F in BrF ₅ solution ^c (room temp.)	liquid BrO ₂ F (-10° C)	assignment
$1253(40)^{d} \mathrm{dp}^{e}$	888(45)	$\left. \begin{array}{c} 963(5) \\ 940(20) \end{array} \right\}$	962(8) dp	953(14 dp	ν_5 ; ν_{BrO} asym
1097(100 p	903(100 450(sh) (25)	908(100) 524(sh) (25)	916(100) p	908(100) p	$v_1; v_{BrO}$ sym
602(20) p	424 }v.br. 408(sh) }	496`) v.br.´ 487(sh)		506(36) p	v_2 ; v_{BrF}
5 33 (50) p	324(10)	$\left. \begin{array}{c} 400(sh) \\ 386 \end{array} \right\} (10)$		394(14) p	$\nu_{3}; \delta_{OBrO}$
398(3 0) p(?)	283(10)	$\left. \frac{305}{294(\mathrm{sh})} \right\} (20)$		3 05(21) p	v_4 ; δ_{OBrF} sym
351(O ⁺) ^f	238(2)	267(15)		271(16) dp	ν _s ; δ _{OBrF} asym

^a Ref. 1. ^b Unpublished results; our results and interpretation are not in complete agreement with those of Paetzold and Aurich Ref. 10. This will be discussed in more detail in a future publication. ^c The BrO_2F spectrum below 900 cm⁻¹ is obscured by the very intense BrF_5 lines. ^d Numbers in parentheses give relative intensities. ^e dp: depolarized; p: polarized; sh: shoulder; v.br.: very broad. ^f Intensity too small to be measured.

We have now prepared BrO_2F by the reaction of KBrO_3 and BrF_5 at room temperature. Although this reaction was previously reported⁴ to occur at -50°C we were unable to obtain any reaction at this low temperature. The product (1) was a white solid which was obtained by dynamic distillation of the reaction mixture through a trap kept at $-48 \,^\circ\text{C}$. The product melted at *ca*. -10°C , and the melt was stable even at room temperature when kept in a wellpassivated Kel-F tube.

The n.m.r. spectrum of (1) in BrF_5 at -35° consisted of a single sharp line at -210 ± 4 p.p.m. from CFCl_3 . The chemical shift depended slightly on the concentration, composition and temperature of the solution. It was comparable to the chemical shifts of the two resonances of BrF_5 which are at -135 and -275 p.p.m. from CFCl_3 , thus confirming that the product is a Br^{v} species.

The Raman spectra of (1) in the solid and liquid states and the partial Raman spectrum of (1) in BrF_5 solution are given in the Table. For a pyramidal BrO_2F molecule of C_s symmetry, six fundamental vibrations are expected, all of which are Raman active. Of these six, four are totally symmetric A' modes, and two are asymmetric A'' modes. The six lines observed in the spectrum of the liquid (1), of which four are polarized and two are depolarized may be satisfactorily assigned to a monomeric pyramidal BrO_2F molecule, by analogy with the known spectrum of ClO_2F .¹ The solid state spectrum is essentially similar to the liquid state spectrum, the major differences being that the asymisoelectronic SeO₂F⁻, the frequencies of the latter being slightly lower than those of BrO_2F because of the negative charge of the anion.

The BrF stretching frequency of BrO₂F (506 cm⁻¹) is relatively low compared with the mean values of the Br-F stretching motions of some other Br^{III}, Br^v and Br^{vII} species, e.g., BrO₃F (605 cm⁻¹),⁵ BrF₆ (615 cm⁻¹),⁶ BrF₈ (606 cm⁻¹),⁷ BrF₄⁻ (492 cm⁻¹),⁷ and BrF₆⁻ (487 cm⁻¹).⁸ A force constant calculation for ClO₂F has revealed a very low Cl-F stretching force constant which indicated a rather weak Cl-F bond, and was attributed to a large ionic character in the Cl-F bond.^{1,9} A similar unexpectedly low stretching frequency for the Se-F bond in SeO₂F⁻ was also attributed, at least in part, to a large ionic character of the Se-F bond.¹⁰ Our results indicate that the Br-F bond in BrO₂F is similarly rather weak, and presumably this may be attributed partly to an important contribution from the ionic resonance structure (2) in addition to the covalent structure (1). The mean of the BrO stretching frequencies

in liquid BrO_2F (931 cm⁻¹) is similar to that for BrO_3F (941 cm⁻¹),⁵ but higher than those of other related species,

 $\rm BrO_{3}^{-}$ (695 cm^{-1}),^{11} BrO_{3}^{-} (829 cm^{-1})^{12} and Br_{3}O_{4} (893 cm^{-1}).^{13} As the stretching frequency for a Br^{VII} compound is expected to be significantly higher than that for a similar Brv compound, it appears that the BrO stretching frequencies in BrO₂F are abnormally high. This is also con-

sistent with an important contribution from structure (2) which places a positive charge on bromine, thereby increasing the BrO stretching frequencies.

(Received, 31st January 1975; Com. 112.)

- ¹ D. F. Smith, G. Begun, and W. Fletcher, Spectrochim. Acta, 1964, 20, 1763.
- ² H. Carter and F. Aubke, Inorg. Chem., 1971, 10, 2296.
- ⁸ M. Schmeisser and E. Pammer, Angew. Chem., 1955, 67, 156.

- ⁴ M. Schmeisser and E. Fammer, Angew. Chem., 1955, 69, 781.
 ⁵ M. Schmeisser and E. Pammer, Angew. Chem., 1957, 69, 781.
 ⁵ H. Claassen and E. Appleman, Inorg. Chem., 1970, 9, 622.
 ⁶ G. Begun, W. Fletcher, and D. Smith, J. Chem. Phys., 1965, 42, 2236.
 ⁷ T. Surles, H. Hyman, L. Quaterman, and A. Popov, Inorg. Chem., 1970, 9, 2726.
 ⁸ J. Shamir and I. Yaroslavsky, Israel J. Chem., 1969, 7, 495.
 ⁹ However, appether more toront force constant calculation for ClO F. (F. A. Rohi
- ⁹ However, another more recent force-constant calculation for ClO₄F, (E. A. Robinson, D. S. Lavery, and S. Weller, Spectrochim.

Acta, 1968, 25A, 151) has led to the conclusion that the Cl-F force constant is not anomalously low.

- ¹⁰ R. Paetzold and K. Aurich, Z. anorg. Chem., 1965, 335, 281.
 ¹¹ J. Evans and G. Lo, Inorg. Chem., 1967, 6, 1483.
 ¹² K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1970.
 ¹³ J. L. Pascal and J. Potier, J.C.S. Chem. Comm., 1973, 446.